Sains Malaysiana 54(10)(2025): 2377-2389

http://doi.org/10.17576/jsm-2025-5410-04

 

Perivascular Stem Cells Demonstrate Similar Stemness and Chondrogenic Expression Potential as Mesenchymal Stem Cells

(Sel Stem Perivaskular Menunjukkan Potensi Stem dan Ekspresi Kondrogen  seperti Sel Stem Mesenkimal)

 

XIAO-LONG SHAN1, TUNKU KAMARUL1, QI HAO DANIEL LOOI2, JHI BIAU FOO3, RAJA ELINA AHMAD4, SUGESH RAGHAVAN1, GANG LI5 & PAN PAN CHONG1,*

 

1Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya,
50603 Kuala Lumpur, Malaysia
2My CytoHealth Sdn. Bhd., Lab 6, DMC Level 2, Hive 5, Taman Teknologi MRANTI, 57000 Bukit Jalil,
Kuala Lumpur, Malaysia
3School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, 47500 Subang Jaya,
Selangor, Malaysia
4Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
5Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo
Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong,
Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China

 

Received: 19 February 2025/Accepted: 9 August 2025

 

Abstract

Perivascular stem cells (PSCs), namely pericytes, are more accessible than traditional sources of mesenchymal stem cells (MSCs) such as bone marrow and serve as an excellent alternative cell source for treating articular cartilage damage. However, evidence of its multipotent or chondrogenic potential compared to MSCs appears lacking. The present study was thus conducted to (i) Isolate and characterize rat adipose tissue (AT)-derived and peripheral blood (PB)-derived PSC, as well as bone marrow (BM)-derived and PB-derived MSCs; (ii) Establish their multipotentiality; and (iii) Trilineage differentiation of their potentials in vitro. PSCs from AT and PB were isolated using magnetic-activated cell sorting, while MSCs were isolated from BM and PB using density gradient centrifugation. Immunophenotyping of PSCs and MSCs was analysed using flow cytometry. Trilineage differentiation of the cells was subsequently assessed using Haematoxylin–Fast Green–Safranin O staining for chondrogenesis, Alizarin Red S for osteogenesis, and Oil Red O for adipogenesis. Chondrogenesis was also analyzed by measuring the production of sulphated glycosaminoglycans. The results showed that both PSCs were similar to MSCs in expressing surface protein markers and the ability to undergo self-renewal and tri-lineage differentiation. However, PSCs expressed higher CD146 levels than MSCs. AT-PSCs exhibited the highest level of proteoglycan content, whereas the chondrogenic potential of PB-PSCs, BM-MSCs, and PB-MSCs demonstrated similar levels. Compared to MSCs, PSCs from various sources demonstrate comparable or higher chondrogenic potential, indicating that PSCs are a superior stem cell source for future cartilage injury treatment strategies.

 

Keywords: Chondrogenic expression; mesenchymal stem cell; pericyte; perivascular stem cell

 

Abstrak

Sel stem perivaskular (PSC), iaitu perisits, lebih mudah didapati daripada sumber tradisional sel stem mesenkimal (MSC) seperti sumsum tulang, menjadikannya sebagai sumber sel alternatif yang sangat baik untuk merawat kerosakan rawan artikular. Walau bagaimanapun, bukti potensi multipoten atau kondrogennya berbanding MSC masih kurang. Oleh itu, kajian ini dijalankan untuk (i) mengasing dan mencirikan tisu adiposa (AT) tikus dan PSC terbitan darah periferi (PB) serta MSC yang berasal daripada sumsum tulang (BM) dan PB; (ii) membuktikan pelbagai potensi mereka; dan (iii) mengkaji potensi pembezaan trilineage secara in vitro. PSC daripada AT dan PB telah diasingkan menggunakan pengisihan sel diaktifkan magnetik, manakala MSC diasingkan daripada BM dan PB menggunakan pengemparan kecerunan ketumpatan. Immunofenotip PSC dan MSC dianalisis menggunakan sitometri aliran. Pembezaan trilineage sel kemudian dinilai menggunakan pewarnaan dan ujian. Krondrogenesis dianalisis dengan mengukur tahap glikosaminoglikan tersulfat. Keputusan menunjukkan bahawa PSC adalah serupa dengan MSC yang ditunjukkan dengan ekspresi penanda protein permukaan dan keupayaan untuk menjalani pembaharuan diri dan pembezaan tiga keturunan. Walau bagaimanapun, PSC ekspresi tahap CD146 dalam PSC adalah lebih tinggi daripada MSC. AT-PSC menunjukkan kandungan proteoglikan tertinggi, manakala potensi kondrogen PB-PSC, BM-MSC dan PB-MSC menunjukkan tahap yang sama. Berbanding dengan MSC, PSC daripada pelbagai sumber menunjukkan potensi kondrogen yang setanding atau lebih baik, menunjukkan bahawa PSC berpotensi  menjadi sumber sel stem yang unggul untuk strategi rawatan kecederaan rawan masa hadapan.

 

Kata kunci: Ekspresi kondrogen; perisit; sel stem mesenkimal; sel stem perivascular

 

REFERENCES

Alvino, V.V., Fernández-Jiménez, R., Rodriguez-Arabaolaza, I., Slater, S., Mangialardi, G., Avolio, E., Spencer, H., Culliford, L., Hassan, S., Sueiro Ballesteros, L., Herman, A., Ayaon-Albarrán, A., Galán-Arriola, C., Sánchez-González, J., Hennessey, H., Delmege, C., Ascione, R., Emanueli, C., Angelini, G.D., Ibanez, B. & Madeddu, P. 2018. Transplantation of allogeneic pericytes improves myocardial vascularization and reduces interstitial fibrosis in a swine model of reperfused acute myocardial infarction. J. Am. Heart Assoc. 7(2): e006727. https://doi.org/10.1161/jaha.117.006727

Armulik, A., Genove, G. & Betsholtz, C. 2011. Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell. 21(2): 193-215. https://doi.org/10.1016/j.devcel.2011.07.001

Bouacida, A., Rosset, P., Trichet, V., Guilloton, F., Espagnolle, N., Cordonier, T., Heymann, D., Layrolle, P., Sensebe, L. & Deschaseaux, F. 2012. Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. PLoS ONE 7(11): e48648. https://doi.org/10.1371/journal.pone.0048648

Boyd, N.L., Nunes, S.S., Krishnan, L., Jokinen, J.D., Ramakrishnan, V.M., Bugg, A.R. & Hoying, J.B. 2013. Dissecting the role of human embryonic stem cell-derived mesenchymal cells in human umbilical vein endothelial cell network stabilization in three-dimensional environments. Tissue Eng. Part A 19(1-2): 211-223. https://doi.org/10.1089/ten.tea.2011.0408

Cai, X., Lin, Y., Hauschka, P.V. & Grottkau, B.E. 2011. Adipose stem cells originate from perivascular cells. Biol. Cell. 103(9): 435-447. https://doi.org/10.1042/BC20110033

Campagnolo, P., Cesselli, D., Al Haj Zen, A., Beltrami, A.P., Krankel, N., Katare, R., Angelini, G., Emanueli, C. & Madeddu, P. 2010. Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121(15): 1735-1745. https://doi.org/10.1161/CIRCULATIONAHA.109.899252

Cantoni, S., Bianchi, F., Galletti, M., Olivi, E., Alviano, F., Galie, N. & Ventura, C. 2015. Occurring of in vitro functional vasculogenic pericytes from human circulating early endothelial precursor cell culture. Stem Cells Int. 2015: 943671. https://doi.org/10.1155/2015/943671

Caplan, A.I. 2008. All MSCs are pericytes? Cell Stem Cell 3(3): 229-230. https://doi.org/10.1016/j.stem.2008.08.008

Caplan, A.I. 2007. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213(2): 341-347. https://doi.org/10.1002/jcp.21200

Cathery, W., Faulkner, A., Maselli, D. & Madeddu, P. 2018. Concise review: The regenerative journey of pericytes toward clinical translation. Stem Cells 36(9): 1295-1310. https://doi.org/10.1002/stem.2846

Chang, H.Y., Chi, J.T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D. & Brown, P.O. 2002. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 99(20): 12877-12882. https://doi.org/10.1073/pnas.162488599

Chong, P.P., Selvaratnam, L., Abbas, A.A. & Kamarul, T. 2012. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J. Orthop. Res. 30(4): 634-642. https://doi.org/10.1002/jor.21556

Corselli, M., Chen, C.W., Sun, B., Yap, S., Rubin, J.P. & Peault, B. 2012. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 21(8): 1299-1308. https://doi.org/10.1089/scd.2011.0200

Crisan, M. & Dzierzak, E. 2016. The many faces of hematopoietic stem cell heterogeneity. Development 143(24): 4571-4581. https://doi.org/10.1242/dev.114231

Crisan, M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M., Park, T.S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., Norotte, C., Teng, P.N., Traas, J., Schugar, R., Deasy, B.M., Badylak, S., Buhring, H.J., Giacobino, J.P., Lazzari, L., Huard, J. & Péault, B. 2008. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3): 301-313. https://doi.org/10.1016/j.stem.2008.07.003

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. & Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317. https://doi.org/10.1080/14653240600855905

Flanagan, K., Fitzgerald, K., Baker, J., Regnstrom, K., Gardai, S., Bard, F., Mocci, S., Seto, P., You, M., Larochelle, C., Prat, A., Chow, S., Li, L., Vandevert, C., Zago, W., Lorenzana, C., Nishioka, C., Hoffman, J., Botelho, R., Willits, C., Tanaka, K., Johnston, J. & Yednock, T. 2012. Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS ONE 7(7): e40443. https://doi.org/10.1371/journal.pone.0040443

Grützkau, A. & Radbruch, A. 2010. Small but mighty: How the MACS-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A 77(7): 643-647. https://doi.org/10.1002/cyto.a.20918

Hass, R., Kasper, C., Bohm, S. & Jacobs, R. 2011. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9: 12. https://doi.org/10.1186/1478-811X-9-12

Hindle, P., Baily, J., Khan, N., Biant, L.C., Simpson, A.H. & Peault, B. 2016. Perivascular mesenchymal stem cells in sheep: Characterization and autologous transplantation in a model of articular cartilage repair. Stem Cells Dev. 25(21): 1659-1669. https://doi.org/10.1089/scd.2016.0165

James, A.W., Zara, J.N., Zhang, X., Askarinam, A., Goyal, R., Chiang, M., Yuan, W., Chang, L., Corselli, M., Shen, J., Pang, S., Stoker, D., Wu, B., Ting, K., Peault, B. & Soo, C. 2012. Perivascular stem cells: A prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl. Med. 1(6): 510-519. https://doi.org/10.5966/sctm.2012-0002

Jang, Y., Koh, Y.G., Choi, Y.J., Kim, S.H., Yoon, D.S., Lee, M. & Lee, J.W. 2015. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cell Dev. Biol. Anim. 51(2): 142-150. https://doi.org/10.1007/s11626-014-9814-6

Jung, K.H., Chu, K., Lee, S.T., Bahn, J.J., Jeon, D., Kim, J.H., Kim, S., Won, C.H., Kim, M., Lee, S.K. & Roh, J.K. 2011. Multipotent PDGFRβ-expressing cells in the circulation of stroke patients. Neurobiol. Dis. 41(2): 489-497. https://doi.org/10.1016/j.nbd.2010.10.020

Kassis, I., Zangi, L., Rivkin, R., Levdansky, L., Samuel, S., Marx, G. & Gorodetsky, R. 2006. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 37(10): 967-976. https://doi.org/10.1038/sj.bmt.1705358

Martinez, L.M., Labovsky, V., Calcagno, M.L., Davies, K.M., Garcia Rivello, H., Bianchi, M.S., Wernicke, A., Fernández Vallone, V.B. & Chasseing, N.A. 2015. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS ONE 10(3): e0121421. https://doi.org/10.1371/journal.pone.0121421

Meyers, C.A., Xu, J., Zhang, L., Chang, L., Wang, Y., Asatrian, G., Ding, C., Yan, N., Zou, E., Broderick, K., Lee, M., Peault, B. & James, A.W. 2019. Skeletogenic capacity of human perivascular stem cells obtained via magnetic-activated cell sorting. Tissue Eng. Part A 25(23-24): 1658-1666. https://doi.org/10.1089/ten.TEA.2019.0031

Mitchell, J.B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z.E., Kloster, A., Di Halvorsen, Y., Storms, R.W., Goh, B., Kilroy, G., Wu, X. & Gimble, J.M. 2006. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24(2): 376-385. https://doi.org/10.1634/stemcells.2005-0234

Pelikánová, T. 2016. Diabetic retinopathy: Pathogenesis and therapeutic implications. Vnitr Lek62(7-8): 620-628.

Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E., Saggio, I., Robey, P.G., Riminucci, M. & Bianco, P. 2016. No identical “mesenchymal stem cells” at different times and sites: Human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports 6(6): 897-913. https://doi.org/10.1016/j.stemcr.2016.05.011

Semple, J.W., Allen, D., Chang, W., Castaldi, P. & Freedman, J. 1993. Rapid separation of CD4+ and CD19+ lymphocyte populations from human peripheral blood by a magnetic activated cell sorter (MACS). Cytometry 14(8): 955-960. https://doi.org/10.1002/cyto.990140816

Sorrentino, A., Ferracin, M., Castelli, G., Biffoni, M., Tomaselli, G., Baiocchi, M., Fatica, A., Negrini, M., Peschle, C. & Valtieri, M. 2008. Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp. Hematol. 36(8): 1035-1046. https://doi.org/10.1016/j.exphem.2008.03.004

Stratman, A.N., Malotte, K.M., Mahan, R.D., Davis, M.J. & Davis, G.E. 2009. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24): 5091-5101. https://doi.org/10.1182/blood-2009-05-222364

Sutermaster, B.A. & Darling, E.M. 2019. Considerations for high-yield, high-throughput cell enrichment: Fluorescence versus magnetic sorting. Sci. Rep. 9(1): 227. https://doi.org/10.1038/s41598-018-36698-1

Sweeney, M.D., Ayyadurai, S. & Zlokovic, B.V. 2016. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci. 19(6): 771-783. https://doi.org/10.1038/nn.4288

Thomas, H., Cowin, A.J. & Mills, S.J. 2017. The importance of pericytes in healing: Wounds and other pathologies. Int. J. Mol. Sci. 18(6): 1129. https://doi.org/10.3390/ijms18061129

Tormin, A., Li, O., Brune, J.C., Walsh, S., Schutz, B., Ehinger, M., Ditzel, N., Kassem, M. & Scheding, S. 2011. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117(19): 5067-5077. https://doi.org/10.1182/blood-2010-08-304287

Ulrich, C., Abruzzese, T., Maerz, J.K., Ruh, M., Amend, B., Benz, K., Rolauffs, B., Abele, H., Hart, M.L. & Aicher, W.K. 2015. Human placenta-derived CD146-positive mesenchymal stromal cells display a distinct osteogenic differentiation potential. Stem Cells Dev. 24(13): 1558-1569. https://doi.org/10.1089/scd.2014.0465

Valenti, M.T., Dalle Carbonare, L., Donatelli, L., Bertoldo, F., Zanatta, M. & Lo Cascio, V. 2008. Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells. Bone 43(6): 1084-1092. https://doi.org/10.1016/j.bone.2008.07.252

Wang, Z. & Yan, X. 2013. CD146, a multi-functional molecule beyond adhesion. Cancer Lett. 330(2): 150-162. https://doi.org/10.1016/j.canlet.2012.11.049

Wanjare, M., Kusuma, S. & Gerecht, S. 2013. Perivascular cells in blood vessel regeneration. Biotechnol. J. 8(4): 434-447. https://doi.org/10.1002/biot.201200199

Winkler, E.A., Bell, R.D. & Zlokovic, B.V. 2010. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol. Neurodegener. 5: 32. https://doi.org/10.1186/1750-1326-5-32

Wu, C.C., Liu, F.L., Sytwu, H.K., Tsai, C.Y. & Chang, D.M. 2016. CD146+ mesenchymal stem cells display greater therapeutic potential than CD146- cells for treating collagen-induced arthritis in mice. Stem Cell Res Ther. 7: 23. https://doi.org/10.1186/s13287-016-0285-4

Wu, Y.X., Jing, X.Z., Sun, Y., Ye, Y.P., Guo, J.C., Huang, J.M., Xiang, W., Zhang, J.M. & Guo, F.J. 2017. CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic differentiation capacity in vitro. Mol. Med. Rep. 16(6): 8019-8028. https://doi.org/10.3892/mmr.2017.7616

Xu, J., Gong, T., Heng, B.C. & Zhang, C.F. 2017. A systematic review: Differentiation of stem cells into functional pericytes. FASEB J. 31(5): 1775-1786. https://doi.org/10.1096/fj.201600951RRR

Yoshimura, K., Shigeura, T., Matsumoto, D., Sato, T., Takaki, Y., Aiba-Kojima, E., Sato, K., Inoue, K., Nagase, T., Koshima, I. & Gonda, K. 2006. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell Physiol. 208(1): 64-76. https://doi.org/10.1002/jcp.20636

Zimmerlin, L., Donnenberg, V.S., Pfeifer, M.E., Meyer, E.M., Peault, B., Rubin, J.P. & Donnenberg, A.D. 2010. Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77(1): 22-30. https://doi.org/10.1002/cyto.a.20813

 

*Corresponding author; email: panpanchong@ummc.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next