Sains Malaysiana 54(10)(2025): 2377-2389
http://doi.org/10.17576/jsm-2025-5410-04
Perivascular Stem Cells Demonstrate Similar Stemness
and Chondrogenic Expression Potential as Mesenchymal Stem Cells
(Sel Stem Perivaskular Menunjukkan Potensi Stem dan Ekspresi Kondrogen seperti Sel Stem Mesenkimal)
XIAO-LONG SHAN1, TUNKU KAMARUL1, QI HAO DANIEL LOOI2, JHI BIAU FOO3, RAJA ELINA AHMAD4, SUGESH RAGHAVAN1, GANG LI5 & PAN PAN CHONG1,*
1Tissue
Engineering Group, National Orthopaedic Centre of Excellence for Research and
Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya,
50603 Kuala Lumpur, Malaysia
2My CytoHealth Sdn. Bhd., Lab 6, DMC
Level 2, Hive 5, Taman Teknologi MRANTI, 57000 Bukit
Jalil,
Kuala Lumpur, Malaysia
3School
of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, 47500
Subang Jaya,
Selangor, Malaysia
4Department
of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur,
Malaysia
5Department
of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences
and Lui Che Woo
Institute of Innovative Medicine, Faculty of Medicine, The Chinese University
of Hong Kong,
Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
Received: 19 February 2025/Accepted: 9 August 2025
Abstract
Perivascular stem cells (PSCs), namely pericytes,
are more accessible than traditional sources of mesenchymal stem cells (MSCs)
such as bone marrow and serve as an excellent alternative cell source for
treating articular cartilage damage. However, evidence of its multipotent or
chondrogenic potential compared to MSCs appears lacking. The present study was
thus conducted to (i) Isolate and characterize rat
adipose tissue (AT)-derived and peripheral blood (PB)-derived PSC, as well as
bone marrow (BM)-derived and PB-derived MSCs; (ii) Establish their
multipotentiality; and (iii) Trilineage differentiation of their potentials in
vitro. PSCs from AT and PB were isolated using magnetic-activated cell
sorting, while MSCs were isolated from BM and PB using density gradient
centrifugation. Immunophenotyping of PSCs and MSCs was analysed using flow
cytometry. Trilineage differentiation of the cells was subsequently assessed
using Haematoxylin–Fast Green–Safranin O staining for chondrogenesis, Alizarin
Red S for osteogenesis, and Oil Red O for adipogenesis. Chondrogenesis was also analyzed by measuring the production of sulphated
glycosaminoglycans. The results showed that both PSCs were similar to MSCs in
expressing surface protein markers and the ability to undergo self-renewal and
tri-lineage differentiation. However, PSCs expressed higher CD146 levels than
MSCs. AT-PSCs exhibited the highest level of proteoglycan content, whereas the
chondrogenic potential of PB-PSCs, BM-MSCs, and PB-MSCs demonstrated similar
levels. Compared to MSCs, PSCs from various sources demonstrate comparable or
higher chondrogenic potential, indicating that PSCs are a superior stem cell
source for future cartilage injury treatment strategies.
Keywords: Chondrogenic expression; mesenchymal
stem cell; pericyte; perivascular stem cell
Abstrak
Sel stem perivaskular (PSC), iaitu perisits, lebih mudah didapati daripada sumber tradisional sel stem mesenkimal (MSC) seperti sumsum tulang, menjadikannya sebagai sumber sel alternatif yang sangat baik untuk merawat kerosakan rawan artikular. Walau bagaimanapun, bukti potensi multipoten atau kondrogennya berbanding MSC masih kurang. Oleh itu, kajian ini dijalankan untuk (i) mengasing dan mencirikan tisu adiposa (AT) tikus dan PSC terbitan darah periferi (PB) serta MSC yang berasal daripada sumsum tulang (BM) dan PB; (ii) membuktikan pelbagai potensi mereka; dan (iii) mengkaji potensi pembezaan trilineage secara in vitro. PSC daripada AT dan PB telah diasingkan menggunakan pengisihan sel diaktifkan magnetik, manakala MSC diasingkan daripada BM dan PB menggunakan pengemparan kecerunan ketumpatan. Immunofenotip PSC dan MSC dianalisis menggunakan sitometri aliran. Pembezaan trilineage sel kemudian dinilai menggunakan pewarnaan dan ujian. Krondrogenesis dianalisis dengan mengukur tahap glikosaminoglikan tersulfat. Keputusan menunjukkan bahawa PSC adalah serupa dengan MSC yang ditunjukkan dengan ekspresi penanda protein permukaan dan keupayaan untuk menjalani pembaharuan diri dan pembezaan tiga keturunan. Walau bagaimanapun, PSC ekspresi tahap CD146 dalam PSC adalah lebih tinggi daripada MSC. AT-PSC menunjukkan kandungan proteoglikan tertinggi, manakala potensi kondrogen PB-PSC, BM-MSC
dan PB-MSC menunjukkan tahap yang sama. Berbanding dengan MSC, PSC daripada pelbagai sumber menunjukkan potensi kondrogen yang setanding atau lebih baik, menunjukkan bahawa PSC berpotensi menjadi sumber sel stem yang unggul untuk strategi rawatan kecederaan rawan masa hadapan.
Kata kunci: Ekspresi kondrogen; perisit; sel stem mesenkimal; sel stem perivascular
REFERENCES
Alvino,
V.V., Fernández-Jiménez, R., Rodriguez-Arabaolaza, I., Slater, S., Mangialardi,
G., Avolio, E., Spencer, H., Culliford, L., Hassan,
S., Sueiro Ballesteros, L., Herman, A., Ayaon-Albarrán,
A., Galán-Arriola, C., Sánchez-González, J., Hennessey, H., Delmege,
C., Ascione, R., Emanueli, C., Angelini, G.D., Ibanez, B. & Madeddu, P. 2018. Transplantation of allogeneic pericytes
improves myocardial vascularization and reduces interstitial fibrosis in a
swine model of reperfused acute myocardial
infarction. J. Am. Heart Assoc. 7(2): e006727.
https://doi.org/10.1161/jaha.117.006727
Armulik, A., Genove, G. & Betsholtz, C.
2011. Pericytes: Developmental, physiological, and pathological perspectives,
problems, and promises. Dev. Cell. 21(2): 193-215.
https://doi.org/10.1016/j.devcel.2011.07.001
Bouacida, A.,
Rosset, P., Trichet, V., Guilloton, F., Espagnolle,
N., Cordonier, T., Heymann, D., Layrolle,
P., Sensebe, L. & Deschaseaux,
F. 2012. Pericyte-like progenitors show high immaturity and engraftment
potential as compared with mesenchymal stem cells. PLoS ONE 7(11): e48648. https://doi.org/10.1371/journal.pone.0048648
Boyd,
N.L., Nunes, S.S., Krishnan, L., Jokinen, J.D., Ramakrishnan, V.M., Bugg, A.R.
& Hoying, J.B. 2013. Dissecting the role of human embryonic stem
cell-derived mesenchymal cells in human umbilical vein endothelial cell network
stabilization in three-dimensional environments. Tissue Eng. Part A 19(1-2):
211-223. https://doi.org/10.1089/ten.tea.2011.0408
Cai,
X., Lin, Y., Hauschka, P.V. & Grottkau, B.E.
2011. Adipose stem cells originate from perivascular cells. Biol. Cell. 103(9):
435-447. https://doi.org/10.1042/BC20110033
Campagnolo,
P., Cesselli, D., Al Haj Zen, A., Beltrami, A.P., Krankel, N., Katare, R.,
Angelini, G., Emanueli, C. & Madeddu, P. 2010.
Human adult vena saphena contains perivascular
progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121(15): 1735-1745. https://doi.org/10.1161/CIRCULATIONAHA.109.899252
Cantoni,
S., Bianchi, F., Galletti, M., Olivi, E., Alviano,
F., Galie, N. & Ventura, C. 2015. Occurring of in vitro functional
vasculogenic pericytes from human circulating early endothelial precursor cell
culture. Stem Cells Int. 2015: 943671.
https://doi.org/10.1155/2015/943671
Caplan,
A.I. 2008. All MSCs are pericytes? Cell Stem Cell 3(3): 229-230.
https://doi.org/10.1016/j.stem.2008.08.008
Caplan,
A.I. 2007. Adult mesenchymal stem cells for tissue engineering versus
regenerative medicine. J. Cell. Physiol. 213(2): 341-347.
https://doi.org/10.1002/jcp.21200
Cathery, W.,
Faulkner, A., Maselli, D. & Madeddu, P. 2018.
Concise review: The regenerative journey of pericytes toward clinical
translation. Stem Cells 36(9): 1295-1310.
https://doi.org/10.1002/stem.2846
Chang,
H.Y., Chi, J.T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D. &
Brown, P.O. 2002. Diversity, topographic differentiation, and positional memory
in human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 99(20): 12877-12882.
https://doi.org/10.1073/pnas.162488599
Chong,
P.P., Selvaratnam, L., Abbas, A.A. & Kamarul, T. 2012. Human peripheral
blood derived mesenchymal stem cells demonstrate similar characteristics and
chondrogenic differentiation potential to bone marrow derived mesenchymal stem
cells. J. Orthop. Res. 30(4): 634-642.
https://doi.org/10.1002/jor.21556
Corselli,
M., Chen, C.W., Sun, B., Yap, S., Rubin, J.P. & Peault,
B. 2012. The tunica adventitia of human arteries and veins as a source of
mesenchymal stem cells. Stem Cells Dev. 21(8): 1299-1308.
https://doi.org/10.1089/scd.2011.0200
Crisan,
M. & Dzierzak, E. 2016. The many faces of hematopoietic stem cell
heterogeneity. Development 143(24): 4571-4581.
https://doi.org/10.1242/dev.114231
Crisan,
M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M.,
Park, T.S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., Norotte,
C., Teng, P.N., Traas, J., Schugar, R., Deasy, B.M., Badylak, S., Buhring, H.J., Giacobino, J.P., Lazzari, L., Huard, J. & Péault,
B. 2008. A perivascular origin for mesenchymal stem cells in multiple human
organs. Cell Stem Cell 3(3): 301-313.
https://doi.org/10.1016/j.stem.2008.07.003
Dominici,
M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I.,
Marini, F., Krause, D., Deans, R., Keating, A., Prockop,
D. & Horwitz, E. 2006. Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society for Cellular Therapy
position statement. Cytotherapy 8(4):
315-317. https://doi.org/10.1080/14653240600855905
Flanagan,
K., Fitzgerald, K., Baker, J., Regnstrom, K., Gardai,
S., Bard, F., Mocci, S., Seto, P., You, M., Larochelle, C., Prat, A., Chow, S.,
Li, L., Vandevert, C., Zago, W., Lorenzana, C., Nishioka,
C., Hoffman, J., Botelho, R., Willits, C., Tanaka, K., Johnston, J. &
Yednock, T. 2012. Laminin-411 is a vascular ligand for MCAM and facilitates
TH17 cell entry into the CNS. PLoS ONE 7(7):
e40443. https://doi.org/10.1371/journal.pone.0040443
Grützkau, A.
& Radbruch, A. 2010. Small but mighty: How the
MACS-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry
A 77(7): 643-647. https://doi.org/10.1002/cyto.a.20918
Hass, R.,
Kasper, C., Bohm, S. & Jacobs, R. 2011. Different populations and sources
of human mesenchymal stem cells (MSC): A comparison of adult and neonatal
tissue-derived MSC. Cell Commun Signal 9: 12.
https://doi.org/10.1186/1478-811X-9-12
Hindle,
P., Baily, J., Khan, N., Biant, L.C., Simpson, A.H.
& Peault, B. 2016. Perivascular mesenchymal stem
cells in sheep: Characterization and autologous transplantation in a model of
articular cartilage repair. Stem Cells Dev. 25(21): 1659-1669.
https://doi.org/10.1089/scd.2016.0165
James,
A.W., Zara, J.N., Zhang, X., Askarinam, A., Goyal,
R., Chiang, M., Yuan, W., Chang, L., Corselli, M.,
Shen, J., Pang, S., Stoker, D., Wu, B., Ting, K., Peault,
B. & Soo, C. 2012. Perivascular stem cells: A prospectively purified
mesenchymal stem cell population for bone tissue engineering. Stem Cells
Transl. Med. 1(6): 510-519. https://doi.org/10.5966/sctm.2012-0002
Jang,
Y., Koh, Y.G., Choi, Y.J., Kim, S.H., Yoon, D.S., Lee, M. & Lee, J.W. 2015.
Characterization of adipose tissue-derived stromal vascular fraction for
clinical application to cartilage regeneration. In Vitro Cell Dev. Biol.
Anim. 51(2): 142-150. https://doi.org/10.1007/s11626-014-9814-6
Jung, K.H.,
Chu, K., Lee, S.T., Bahn, J.J., Jeon, D., Kim, J.H., Kim, S., Won, C.H., Kim,
M., Lee, S.K. & Roh, J.K. 2011. Multipotent PDGFRβ-expressing cells in
the circulation of stroke patients. Neurobiol.
Dis. 41(2): 489-497. https://doi.org/10.1016/j.nbd.2010.10.020
Kassis,
I., Zangi, L., Rivkin, R., Levdansky, L., Samuel, S., Marx, G. &
Gorodetsky, R. 2006. Isolation of mesenchymal stem cells from G-CSF-mobilized
human peripheral blood using fibrin microbeads. Bone Marrow Transplant 37(10):
967-976. https://doi.org/10.1038/sj.bmt.1705358
Martinez,
L.M., Labovsky, V., Calcagno, M.L., Davies, K.M.,
Garcia Rivello, H., Bianchi, M.S., Wernicke, A., Fernández Vallone, V.B. &
Chasseing, N.A. 2015. CD105 expression on CD34-negative spindle-shaped stromal
cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS ONE 10(3): e0121421. https://doi.org/10.1371/journal.pone.0121421
Meyers,
C.A., Xu, J., Zhang, L., Chang, L., Wang, Y., Asatrian, G., Ding, C., Yan, N.,
Zou, E., Broderick, K., Lee, M., Peault, B. &
James, A.W. 2019. Skeletogenic capacity of human perivascular stem cells
obtained via magnetic-activated cell sorting. Tissue Eng. Part A 25(23-24):
1658-1666. https://doi.org/10.1089/ten.TEA.2019.0031
Mitchell,
J.B., McIntosh, K., Zvonic, S., Garrett, S., Floyd,
Z.E., Kloster, A., Di Halvorsen, Y., Storms, R.W., Goh, B., Kilroy, G., Wu, X.
& Gimble, J.M. 2006. Immunophenotype of human adipose-derived cells:
temporal changes in stromal-associated and stem cell-associated markers. Stem
Cells 24(2): 376-385. https://doi.org/10.1634/stemcells.2005-0234
Pelikánová,
T. 2016. Diabetic retinopathy: Pathogenesis and therapeutic implications. Vnitr Lek62(7-8):
620-628.
Sacchetti,
B., Funari, A., Remoli, C., Giannicola,
G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E.,
Saggio, I., Robey, P.G., Riminucci, M. & Bianco, P. 2016. No identical
“mesenchymal stem cells” at different times and sites: Human committed
progenitors of distinct origin and differentiation potential are incorporated
as adventitial cells in microvessels. Stem Cell
Reports 6(6): 897-913. https://doi.org/10.1016/j.stemcr.2016.05.011
Semple,
J.W., Allen, D., Chang, W., Castaldi, P. & Freedman, J. 1993. Rapid
separation of CD4+ and
CD19+ lymphocyte populations from human peripheral blood by a magnetic activated cell
sorter (MACS). Cytometry 14(8): 955-960.
https://doi.org/10.1002/cyto.990140816
Sorrentino,
A., Ferracin, M., Castelli, G., Biffoni,
M., Tomaselli, G., Baiocchi, M., Fatica, A., Negrini, M., Peschle, C. & Valtieri, M. 2008. Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp. Hematol. 36(8): 1035-1046. https://doi.org/10.1016/j.exphem.2008.03.004
Stratman,
A.N., Malotte, K.M., Mahan, R.D., Davis, M.J. & Davis, G.E. 2009. Pericyte
recruitment during vasculogenic tube assembly stimulates endothelial basement
membrane matrix formation. Blood 114(24): 5091-5101.
https://doi.org/10.1182/blood-2009-05-222364
Sutermaster, B.A.
& Darling, E.M. 2019. Considerations for high-yield, high-throughput cell
enrichment: Fluorescence versus magnetic sorting. Sci. Rep. 9(1): 227.
https://doi.org/10.1038/s41598-018-36698-1
Sweeney,
M.D., Ayyadurai, S. & Zlokovic, B.V. 2016.
Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci. 19(6):
771-783. https://doi.org/10.1038/nn.4288
Thomas,
H., Cowin, A.J. & Mills, S.J. 2017. The importance of pericytes in healing:
Wounds and other pathologies. Int. J. Mol. Sci. 18(6): 1129.
https://doi.org/10.3390/ijms18061129
Tormin, A.,
Li, O., Brune, J.C., Walsh, S., Schutz, B., Ehinger, M., Ditzel, N., Kassem, M.
& Scheding, S. 2011. CD146 expression on primary
nonhematopoietic bone marrow stem cells is correlated
with in situ localization. Blood 117(19): 5067-5077.
https://doi.org/10.1182/blood-2010-08-304287
Ulrich,
C., Abruzzese, T., Maerz, J.K., Ruh, M., Amend, B., Benz, K., Rolauffs, B., Abele, H., Hart, M.L. & Aicher, W.K.
2015. Human placenta-derived CD146-positive mesenchymal stromal cells display a
distinct osteogenic differentiation potential. Stem Cells Dev. 24(13):
1558-1569. https://doi.org/10.1089/scd.2014.0465
Valenti,
M.T., Dalle Carbonare, L., Donatelli, L., Bertoldo, F., Zanatta, M. & Lo
Cascio, V. 2008. Gene expression analysis in osteoblastic differentiation from
peripheral blood mesenchymal stem cells. Bone 43(6): 1084-1092.
https://doi.org/10.1016/j.bone.2008.07.252
Wang,
Z. & Yan, X. 2013. CD146, a multi-functional molecule beyond adhesion. Cancer
Lett. 330(2): 150-162. https://doi.org/10.1016/j.canlet.2012.11.049
Wanjare,
M., Kusuma, S. & Gerecht, S. 2013. Perivascular cells in blood vessel
regeneration. Biotechnol. J. 8(4):
434-447. https://doi.org/10.1002/biot.201200199
Winkler,
E.A., Bell, R.D. & Zlokovic, B.V. 2010.
Pericyte-specific expression of PDGF beta receptor in mouse models with normal
and deficient PDGF beta receptor signaling. Mol. Neurodegener. 5: 32.
https://doi.org/10.1186/1750-1326-5-32
Wu,
C.C., Liu, F.L., Sytwu, H.K., Tsai, C.Y. & Chang,
D.M. 2016. CD146+ mesenchymal stem cells display greater therapeutic potential than CD146- cells
for treating collagen-induced arthritis in mice. Stem Cell Res Ther. 7:
23. https://doi.org/10.1186/s13287-016-0285-4
Wu,
Y.X., Jing, X.Z., Sun, Y., Ye, Y.P., Guo, J.C., Huang, J.M., Xiang, W., Zhang,
J.M. & Guo, F.J. 2017. CD146+ skeletal stem cells from growth plate exhibit specific chondrogenic
differentiation capacity in vitro. Mol. Med. Rep. 16(6):
8019-8028. https://doi.org/10.3892/mmr.2017.7616
Xu, J.,
Gong, T., Heng, B.C. & Zhang, C.F. 2017. A systematic review:
Differentiation of stem cells into functional pericytes. FASEB J. 31(5):
1775-1786. https://doi.org/10.1096/fj.201600951RRR
Yoshimura,
K., Shigeura, T., Matsumoto, D., Sato, T., Takaki,
Y., Aiba-Kojima, E., Sato, K., Inoue, K., Nagase, T., Koshima, I. & Gonda, K. 2006. Characterization of
freshly isolated and cultured cells derived from the fatty and fluid portions
of liposuction aspirates. J. Cell Physiol. 208(1): 64-76.
https://doi.org/10.1002/jcp.20636
Zimmerlin, L., Donnenberg, V.S., Pfeifer, M.E., Meyer, E.M., Peault, B., Rubin, J.P. & Donnenberg,
A.D. 2010. Stromal vascular progenitors in adult human adipose tissue. Cytometry
A 77(1): 22-30. https://doi.org/10.1002/cyto.a.20813
*Corresponding author; email:
panpanchong@ummc.edu.my